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Subdominant Critical Singularities in the bcc 
Ising Model 
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In order to analyze coalescing singularities using series expansion, a modifica- 
tion of the method introduced by Baker and Hunter is proposed. The Pad~ 
approximants on the Mellin transform are computed simultaneously for the 
initial series and its derivatives, allowing unbiased estimates for the critical 
parameters. The method is applied to the series generated by Nickel for various 
values of the spin in the bcc Ising model. We show that even with these longer 
series, the subdominant indices display large variation with the spin, and remain 
too small compared to the universal renormalization group prediction. However, 
the method does not detect other singularities in the temperature plane which 
are responsible for the observed discrepancy. Therefore the discrepancy is not 
significant. 
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of critical indices; Pade approximants and mellin transform. 

1. I N T R O D U C T I O N  

The renormalizat ion group approach  to critical phenomena  initiated by 
Wilson (1) is generally accepted now, and definite predictions have been 
given for critical indices starting f rom field theory models. (2-6) However,  
there were small but  persistent discrepancies with values obta ined f rom 
series analysis in the s p i n - l / 2  Ising model. (7-9) Addi t ional  terms have 
recently been computed  by Nickel (1~ in the bcc Ising model.  Nickel 's  
main  observat ion is related to the dependence of critical indices on the 
value of the spin: he showed that  the critical indices obtained f rom series 
analysis depend much  more  on the value of the spin than expected. Thus  
uncertainties given by usual ratio or D-log Pad6 method,  (12'13) or Pad6 
Mellin analysis (14) should be enlarged in order  to include spin dependence 
effects. Spin effects were considered before only on fcc lattice, (15'~6) but  
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shorter series than that now available on bcc lattice. With the new data 
there seem now to be no serious discrepancies any more for the critical 
indices "/and u between field theory and series analysis. (11) New analyses 
have been performed using Nickel's data, (~7'18~ which confirm the previous 
conclusion by Nickel concerning critical indices and hyperscaling. Also 
deserving mention is a different kind of analysis (~9'2~ using expansion in 
effective renormalized coupling constant which helps explain the apparent 
contradiction with previous results. (7'22) 

Much less clear is the situation concerning subdominant correc- 
tions, (23'19~ which appear often much too weak to be in perfect agreement 
with field theory estimates, although other analyses (~7'18) give indirect 
confirmation of field theory. This paper is devoted to a careful analysis of 
the bcc series using Nickel's data. The method used is an improvement of 
the method used by Baker and Hunter, ( 14~ which perform Pad6 approxima- 
tion on the Mellin transform of the high-temperature series. In fact the 
method is sensitive to the value of the critical temperature parameter, (23) an 
effect also observed in other procedures. (24) We will especially emphasize 
this question and give an independent determination of the critical temper- 
ature parameter, by comparison of the initial series and its derivatives. We 
also analyze the spin dependence effect. The conclusion is that even the 
present series are not sufficiently long to detect without any doubt a 
subdominant universal singularity, and we observe that the subdominant 
index increases with the spin, an effect which may be related to the increase 
of the amplitude of the singularity. We show by analysis of test functions 
that this effect may be attributed to the regular correction to the dominant 
singularity which cannot be separated, at the available order, from the 
subdominant one, The presence of other singularities in the temperature 
plane is in fact responsible of the slowness of convergence. But we need 
longer series to detect these singularities and remove their effects in an 
unambiguous way. 

2. A BEST CHOICE FOR THE CRITICAL PARAMETERS 

We assume that the function f(K), given through its power series, 
admits a singular behavior near K = Kc: 

f ( K ) = ~ f , ~ g " ~ f o  1 - ~ ) -  + ~ / A ) i ~ ( 1 - ~ )  

The method introduced by Baker and Hunter (14) generates an auxiliary 
function S(w)  which behaves as (23) 

S(w)  = 2 S, wn~ fo  1 + y------w �9 1 + yi w 
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S(w) will exhibit polar singularities at w i = - 1 / 7 i  related to the singular 
behavior of f near K c and also at w n = I/n related to the regular par t of f 
near K c. The series expansion of S can be deduced from the expansion of 
f.(2a) Pad6 approximants to S will provide estimates for the positions and 
residues of poles, that is, estimates for weights and indices. However, in 
principle an exact knowledge of K c is required to compute the series 
expansion of S, and uncertainties on Kc will generate instabilities in the 
results due to an effective strengthening of the regular part. Therefore we 
will use Kc as an external parameter (23) and examine the variation of 
estimates 7(K~) and yl(K~) with Kc. In the present work we will consider 
simultaneously f(K) and its derivatives: 

0 n f(n)(K) = ~ f(K) 

which admits also a singular behavior of a similar kind. Each series f(n)(K) 
will provide estimates y(n)(K~) and 7~n)(K~), and the best K~ will be the one 
for which variation of estimate with the order of derivation is as small as 
possible. This procedure, which resulted from a discussion with J. Zinn- 
Justin, seems to be new and gives an independent determination of the best 
value of the critical parameter K~. We first consider the susceptibility series. 
The reader can see how the best K~ can be detected graphically in Fig. 1 for 
7 and Fig. 2 for Yl in the spin-2 case. This particular case has been chosen 
for illustration, but the method works equally well for the spin 1, 2, and oo 
susceptibility series and also for the corresponding squared correlation 
length series. Furthermore, the best K~ obtained for 7, 71, (2v), and (2v)l do 
agree within errors. It is even possible to eliminate K~ by plotting 3' against 
71 as shown in Fig. 3, which shows that a direct determination of the best y 
and 71 is possible using such a plot. 

In the following tables we give the best estimates of the indices Y and 
71 = Y -  A~V)coming from the susceptibility, the indices 2v and (2u)l 
= 2 v -  A~ ~) coming from the squared correlation lengths, as well as the 
weight of the singularities defined as 

x( K )"Xo[ ( 1- 

These estimates are obtained 

K K 
+ Ax 1 - ~-] 

K -2" A~2( 1- K ] 

with the' highest-order possible (n- 1/n) 
Pad6 approximant, the order n decreasing with the order of derivation. We 
concentrated our analysis on these particular Pad6 approximants replacing 
the analysis of the full Pad6 table by the analysis of the various derivatives. 
In addition, use of the derivative will suppress effects of low orders, giving 
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Fig. 1. 
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Estimates for 7 versus K c- 1 in the spin-2 case, given by various derivatives of the 
susceptibility series. 

more emphasis to higher terms. We want to point out that the rather 
unexpected stability with order of derivation is our best reason to trust the 
method. In fact it is known that Pad6 approximant will give good results 
when the residues of the dominant pole have the same sign. This property is 
conserved through derivation, which provides another argument in favor of 
our procedure. 

3. RESULTS 

The results obtained in the sp in- l /2  case display no stability for the 
subdominant indices. The values obtained for 7 and p are in agreement 
with high-temperature series results (u~1.2466, v = 0.638); however, the 
best K c for 7 and p differ by about 3 • 10 -4, which is about five times more 
than in the other spin cases. The series expansions at order 22 on power of 
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Fig. 2. 
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Estimates for 71 versus K c-  J in the spin-2 case gwen by various derivatives of the 
susceptibility series. 

K show anomalous behavior, and give very unstable subdominant  indices, 
an effect not apparent  at order 16 in the expansion on powers of tanh K 
considered before by Bessis et al. (23) The smallness of the weight of the 
subdominant  singularities is probably responsible of the present situation, 
which looks more like the fcc case considered by the same authors. 

In the higher spin case, our results for ~, and v agree with results of 
Nickel (lz) and Zinn-Justin. (17) However, renormalization group theory (25'26) 
predicts that 3' - "/1 and 2v - (2v)] should also be universal and equal to 
~0v = 0.498 + 0.020, (5'6) which gives Y] = 0.747 + 0.007 and (2v)j = 0.767 + 
0.008. Even in the most favorable case, which occurs at infinite spin, we get 
~,~ = 0.50 + 0.02 and (2v)] = 0.56 ___ 0.02. Therefore the subdominant  singu- 
larities obtained through the present analysis remain too weak. However, 
we observe that our estimates of the subdominant  singularity depend very 
much on the spin, an effect reminiscent of the variation of y and v already 
observed by Nickel. Results are displayed in Tables I and II. 
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Estimates for 3' versus 71 in the spin-2 case given by various derivatives of the 
susceptibility series, compared to renormatization group estimates. 

We want to mention that the uncertainties we quoted take into 
account not only the variation of indices with order of derivation, but also 
the values we can determine by comparison of amplitudes of the various 
derivatives. We have checked that the amplitudes of the singularities do 
vary with the order of derivation in a way consistent with our estimates of 
indices. 

We have also obtained values for R = A J A •  �89 x. We get 
i _+ 0.5 for spin 1/2, 0.80 _ 0.06 for spin 1, 0.73 4- 0.04 for spin 2, 0.67 _+ 
0.04 for spin 2. These number (except for spin I / 2  as mentioned above) 
give estimates for R which are close to the universal predicted values R = 
0.65 4- 0.05. (27-29) However, our result still display a variation with the spin. 

So at least we can conclude that the present series do not yield a 
universal isolated singularity at K C. Universality might be restored by 
taking into account other singularities in the K plane. There is some 
indication (17) that this could occur. In fact, other singularities will generate 
through the Mellin transform regular contribution ~ a n ( K  c - K) n, that is, 
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addit ional  poles corresponding to positive indices in the Pad6 Mellin 
approximant .  We  shall see in the next  section that  the avai lable orders are 
not  sufficiently high to separate  all the present  singularities; in par t icular  
we should also see contr ibut ion at  y, 3' - t0v, y - 1, 3' - 2top . . . . .  Our  result 
could fit in the scheme of renormal iza t ion  theory if we assume that  our  
subdominan t  singularity represents in fact  a combina t ion  of two singulari- 
ties at 3' - top "~ 3' - 0.5 and  3' - 1. But a direct check of universal  proper-  
ties of 3'1 is still lacking. 

4. COMPARISON WITH TEST FUNCTIONS 

In  order  to verify the last s ta tements  of the previous section, we have  
considered test funct ions of the following form:  

f ( K ) - -  1 - ~ - ~  + ~ t  i 1 -  K +t~ 1 + ~ - ~  
i = 1  

We have  used 3' = 1.24, y~ = y - 1/2,  "/2 = Y - 1, Y3 = Y - 2, and  a = 0.1, 
in order  to simulate a realistic susceptibility series; with an ant i fe r romag-  
netic singularity at  K = - K  c. We  have  observed that  using 22 terms, our  
d iagrams (Figs. 1.2, 3) are well reproduced  with values t I = t 2 -- t a = 0.1, t 3 
small. However ,  this is not  in tended to be a fit, bu t  only an example  given 
in order  to unders tand  why the value we get for  y~ are too small. In  fact  we 
get only two poles corresponding to positive indices y and  Yl close to 1.24 
and  0.5, respectively. The  values ob ta ined  for 3'1 s tay in between 0.24 and  
0.74. We  have also observed the following features of the subdominan t  
poles. 

(i) Stability is lost if t~ or t2 are negative. 
(ii) The  subdominan t  index decreases toward 0.24 when we reduce t 1 

and  increases toward the right value 0.74 when we reduce t 2. 
(iii) For  the best  Kc, we observe A K ~ / K ~ 2  • 10 -5 with 22 terms and  

1 0  - 6  w i t h  34 terms. 
(iv) We get the right n u m b e r  of positive indices (three in our  case) 

when we use 34 terms, but  only in a small range a round  the exact  K~. We  

Table I. Analysis of the Susceptibility Series 
i i  i 

Spin  Best  K C- 1 Y 3'1 = Y - Ai X0 Ax 

1 / 2  6.35320_+ 8.10 - 5  1.2466 + 0 .0002 - -  0 .998 + 0.001 2.10 - 2 - +  0.5 10 - 2  

1 4 . 4 5 1 2 0 + 5 . 1 0  - 5  1 .2394_+0 .0005  0 .30_+0 .03  0 . 6 1 4 _ + 0 . 0 0 2  0 . 1 2 2 + 0 . 0 0 7  

2 3 .40995 + 4 .10 - 5  1.2375 _+ 0 .0004 0.41 _+ 0.03 0 .437 + 0 .004 0 .210 _+ 0 .006 

oo 2 .29838 + 4.10 - 5  1.2372 _+ 0 .0002 0 .50 _+ 0.02 0 .280 _+ 0 .002 0 .268 + 0.008 
i i 
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Table II. Analysis of the Squared Correlation Length Series 

Spin Best K c- i 2v (2v)l = 2v - A l ~02 A~2 

1/2 6.35290_+ 7.10 -5 1.2766 + 0.0003 - -  7.72_+ 0.01 4.10 -2+ 1.10 -2 
1 4A5110 _ 4.10 -s 1.2641 _+ 0.0004 0.32 +_ 0.03 4.70 +_ 0,02 0.196 • 0.006 
2 3.40993 _+ 3.10 -5 1.2612 _+ 0.0006 0.48 + 0.02 3,33 +_ 0.02 0.309 + 0.009 
oo 2.29836 _+ 4.10 -5 1.2608 _+ 0.0006 0.56 + 0.02 2,14 _+ 0.02 0.359 • 0.011 

i I i 

get 7 = 1.2396, y1"--0.67, y2=0 .10 ;  however, one has to be careful in 
analyzing the variation of 7 and ),~: the interesting range is reduced when 
the order increases. 

(v) The results are not considerably better when the amplitude G of the 
singularity at ( - K c )  is reduced even by a factor of 10. We still have only 
two positive indices. However, if we consider a new function with singular- 
ity at ( - 2 K c )  instead of ( - K c ) ,  we get with 22 terms somewhat improved 
results: A third positive pole appears in the vicinity of the exact Kc, and 3'~ 
increases. But results are not very stable. 

5. C O N C L U S I O N  

The comparison with test functions shows that, as long as we do not 
get the right number  of poles corresponding to positive indices, we will not 
get accurate values for subdominant  indices. The number  of expansion 
terms required in order to get the right answer seems to be prohibitive. 
Nevertheless, our analysis shows that the discrepancy with renormal- 
ization group result is not significant. In other words, our results can be 
interpreted indirectly in the renormalization group frame. A direct verifica- 
tion is still lacking. Our work provides also a warning: it is possible to 
reproduce rather well the series expansion with a somewhat inappropriate 
function (here two instead of three positive indices). Therefore we can have 
fake stability, an effect already observed by Nickel. (11) This warning will 
still be valid for future methods devised in order to include antiferromag- 
netic effects, which may be perturbed by other unknown singularities. A 
mystery remains in the sp in - l /2  case. Why are stability values for K c 
obtained from susceptibility and square correlation length so different? 
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